Treatment benefits from revascularization decrease over time, and 1.9 million brain cells die every minute following stroke onset (Saver, 2006); therefore, all patients with stroke should be treated as quickly as possible to maximize the potential for the best outcomes. The new extended time windows should not be interpreted to mean that time to treatment should be slowed in any way.
Acute stroke treatment is shifting from a time-based to a tissue-based paradigm as emerging evidence suggests that the speed of stroke progression differs between individuals and beneficial treatment may be offered beyond standard time windows. Using time as the sole criterion to select patients for thrombolysis and endovascular thrombectomy (EVT) may lead to missed opportunities for treatment. Nevertheless, “time is brain” remains a reality, and delays in stroke diagnosis and treatment are associated with worse outcomes” (Desai and Smith, Cardiovascular Disease and Stroke, 2013).
Endovascular intervention refers to EVT as well as other endovascular procedures such as stenting.
Section 5.1 Clinical Considerations
For patients with symptomatic ICH following IV thrombolysis refer to section 5.6.
Section 5.2 Clinical Considerations
Note: When an inpatient has a stroke while in hospital, all other sections of the CSBP modules apply to these patients for assessment, diagnosis, management, and recovery.
Refer to Section 4.2 and Boxes 4A, 4B, and 4C for detailed recommendations on neuroimaging-based selection criteria. Refer to Box 5D for information on the Pre- and Post- Management of Patients Undergoing Endovascular Thrombectomy.
5.4.1 Anterior Circulation
5.4.2 Posterior Circulation
5.4.3 Sedation for Endovascular Interventions
Section 5.4 Clinical Considerations
Note: Clinical consideration 6 is controversial. It will be updated as additional evidence becomes available. In the meantime, clinicians involved in acute stroke care should focus on improving patient outcomes while safely reducing door-to-needle and door-to-puncture times. The main driver for excellent outcomes remains “time is brain.”.
Note: Section 5.6 applies to patients experiencing a cerebral or systemic hemorrhage following administration of intravenous thrombolysis. Refer to CSBPR guidelines on Management of Intracerebral Hemorrhage for additional information.
5.6.1 Intracranial Hemorrhage
5.6.2 Extracranial (Systemic) Hemorrhage Management
Note: For systemic hemorrhage, follow local protocol for management guidance.
Section 5.6 Clinical Considerations
Meta-analyses of randomized controlled trials (RCTs) of intravenous alteplase for acute ischemic stroke have shown the treatment can reduce the risk of disability and death, despite a small risk of serious bleeding. The widest time window for alteplase administration after stroke onset remains imprecisely defined, but currently available data show clear evidence of benefit when given up to 4.5 hours after the onset of symptoms. There remains a strong inverse relationship between treatment delay and clinical outcome; therefore, eligible patients should be treated as soon as possible.
Endovascular treatment for large artery ischemic stroke in the anterior circulation has clearly demonstrated efficacy with numbers needed to treat (NNT) of approximately four to achieve functional independence at 90 days, although data from the DAWN trial (Nogueira et al. New Eng J Med 2018; 378:11-21.) suggest the NNT may be as low as three. Pooled results from a series of older trials, indicated the NNT for this outcome was higher, closer to five (HERMES, Goyal et al. Lancet 2016;387(10029):1723-31). This type of therapy can have a profoundly positive impact on patients who suffer the most devastating ischemic strokes, who without treatment may be left permanently disabled.
People with lived experience expressed the importance of having conversations with loved ones before health changes occur. Without these conversations, it can be difficult to know what the person would want. Some individuals shared that those conversations, even around desire to be involved in trials and/or experimental treatments, can be helpful to have in advance of changes in health status. Similarly, people with lived experience stated the importance of sharing personal values and preferences with the healthcare team, to help with treatment decisions.
(Note: DAWN trial criteria: To obtain mRS of 0-2 at 90 days (49% vs. 13%=NNT of 2.8); HERMES 2016 meta-analysis to obtain mRS score of 0-2 at 90 days (46% vs. 26.5%=NNT of 5.1).
To ensure people experiencing a stroke receive timely stroke assessments, interventions and management, interdisciplinary teams need to have the infrastructure and resources required. These may include the following components established at a systems level.
System Indicators:
Process indicators:
Patient-oriented outcome and experience indicators:
Measurement Notes
Resources and tools listed below that are external to Heart & Stroke and the Canadian Stroke Best Practice Recommendations may be useful resources for stroke care. However, their inclusion is not an actual or implied endorsement by the Canadian Stroke Best Practices writing group. The reader is encouraged to review these resources and tools critically and implement them into practice at their discretion.
Healthcare Provider Information
Information for people with lived experience of stroke, including family, friends and caregivers
Evidence Table and Reference List 5 (Acute Ischemic Stroke Treatment – Thrombolytic Therapy)
Evidence Table and Reference List 5b (Acute Ischemic Stroke Treatment – Endovascular Therapy)
The weight of evidence from many large, international trials over a time frame of 20 years clearly indicate that treatment with intravenous alteplase reduces the risk of death or disability following ischemic stroke, at 3 to 6 months post-treatment. The NINDS trial (1995) was one of the earliest, large trials conducted in the USA. Patients were randomized to receive alteplase or placebo within three hours of symptom onset. At 3 months, significantly more patients in the t-PA group had experienced a good outcome (using any one of the study’s four metrics), with no difference in 90-day mortality between groups. In contrast, patients who received alteplase within 3 to 5 hours in the ATLANTIS trial (1999) were no more likely to have a good neurological or functional outcome at 90 days than patients in the placebo group.
The Third International Stroke Trial (IST-3, 2012) is the largest (n=3,035) and most recent trial of alteplase, in which patients were randomized to receive a standard dose of alteplase (0.9 mg/kg) or placebo. Investigators aimed to assess the risks and benefits of treatment among a broader group of patients, and determine if particular subgroups of patients might benefit preferentially from treatment. In this trial, 95% of patients did not meet the strict licensing criteria, due to advanced age or time to treatment. Unlike all previous large trials, which excluded them, IST-3 included patients >80 years of age. In fact, the majority of patients (53%) were >80 years of age. Approximately one-third of all patients were treated within 0-3 hours, 3.0-4.5 hours, and 4.5-6.0 hours of onset of symptoms. Overall, there was an increase in the risk of death within 7 days in patients who had received alteplase, although there was no difference in 6-month mortality in both crude and adjusted analyses. There was no significant difference in the percentage of patients who were treated with alteplase who were alive and independent (defined as an Oxford Handicap Score of 0-1) at 6 months (37% vs. 35%, adjusted OR=1.13, 95% CI 0.95 to 1.35, p=0.181, although a secondary ordinal analysis suggested a significant, favourable shift in the distribution of OHS scores at 6 months. Significantly improved odds of a good outcome at 6 months were associated with the subgroups of older patients (≥80 years), higher NIHSS scores, higher baseline probability of good outcome and treatment within 3 hours. Fatal or non-fatal symptomatic intracranial hemorrhage within 7 days occurred more frequently in patients in the t-PA group (7% vs. 1%, adjusted OR=6.94, 95% CI 4.07 to 11.8, p<0.0001). The 3-year risk of mortality (2016) was similar between groups (47% vs. 47%, 95% CI 3.6%, 95% CI -0.8 to 8.1); however, patients who received rt-PA had a significantly lower risk of death between 8 days and 3 years (41% vs. 47%; HR= 0.78, 95% CI 0·68–0·90, p=0·007).
Emberson et al. (2014) used data from 6,756 patients from 9 major t-PA trials (NINDs a/b, ECASS I/II, III, ATLANTIS a/b, EPITHET, IST-3) to examine the effect of timing of administration more closely. Earlier treatment was associated with the increased odds of a good outcome, defined as an (mRS score of 0-1 (≤3.0 h: OR=1.75, 95% CI 1.35-2.27 vs. >3 to ≤4.5 h: OR=1.26, 95% CI 1.05-1051 vs. >4.5 h: OR=1.15, 95% CI 0.95-1.40). Framed slightly differently, when patient-level data from the same 9 major randomized controlled trials (RCTs) were recently pooled, Lees et al. (2016) reported that for each patient treated within 3 hours, significantly more would have a better outcome (122/1,000, 95% CI 16-171), whereas for each patient treated >4.5 hours, only 20/1,000 (95% CI -31-75, p=0.45) would have a better outcome. Wardlaw et al. (2013), including the results from 12 RCTs (7,012 patients), concluded that for every 1,000 patients treated up to 6 hours following stroke, 42 more patients were alive and independent (mRS<2) at the end of follow-up, despite an increase in early ICH and mortality. The authors also suggested that patients who did not meet strict licensing criteria due to age and timing of treatment (i.e., patients from the IST-3) trial were just as likely to benefit; however, early treatment, within 3 hours of stroke onset, was more effective.
Results from several recent trials indicate that thrombolysis with t-PA can be used for patients outside of the previously established therapeutic window. In the Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) trial (Ma et al., 2019), 225 patients with an ischemic stroke were included, where symptom onset was estimated to be 4.5 to ≤9 hours previously. Recruitment was suspended after the results of the WAKE-UP trial became available. The primary outcome (mRS 0-1 at 90 days) occurred in 35.4% of the patients in the alteplase group and 29.5% in the control (placebo) group. After adjustment for age and baseline severity, the likelihood of the primary outcome significantly increased in the alteplase group (RR=1.44, 95% CI 1.01–2.06), as did the proportion of patients who attained a mRS score of 0-2 at 90 days (49.6% vs. 42.9%; adjusted RR=1.36, 95% CI, 1.06 to 1.76); however there was no significant difference between groups in functional improvement at 90 days (i.e., shift in mRS scores; RR=1.55, 95% CI 0.96 to 2.49). The results from the Efficacy and Safety of MRI-based Thrombolysis in Wake-up Stroke (WAKE-Up) trial (Thomalla et al., 2018) also suggest that highly selected patients with mild to moderate ischemic strokes and an unknown time of symptom onset, treated with alteplase may also benefit from treatment. Patients in this trial were not eligible for treatment with mechanical thrombectomy and were selected based on a pattern of DWI-FLAIR-mismatch. A significantly higher proportion of patients in the alteplase group had a favourable clinical outcome (mRS 0-1) at 90 days (53.3% vs. 41.8%, adj OR=1.61, 95% CI 1.06-2.36, p=0.02), although the risk of type 2 parenchymal hemorrhage was significantly higher compared with placebo (4% vs. 0.4%, adj OR=10.46, 95% CI 1.32 to 82.77, p=0.03).
The standard treatment dose of rt-PA is established to be 0.9 mg/kg, with a maximum dose of 90 mg. The non-inferiority of a lower dose (0.6 mg/kg) was recently examined in the Enhanced Control of Hypertension and Thrombolysis Stroke Study (ENCHANTED) trial (Anderson et al., 2016). The primary outcome (death or disability at 90 days) occurred in 53.2% of low-dose patients and 51.1% in standard-dose patients (OR=1.09, 95% CI 0.95-1.25, p for non-inferiority=0.51), which exceeded the upper boundary set for non-inferiority of 1.14. The risks of death within 90 days or serious adverse events did not differ significantly between groups (low dose vs. standard dose: 8.5% vs. 10.3%; OR=0.80, 95% CI 0.63-1.01, p=0.07 and 25.1% vs. 27.3%; OR=0.89, 95% CI 0.76-1.04, p=0.16, respectively), although the risk of symptomatic ICH was significantly higher in patients that received the standard dose of rt-PA.
Strategies to improve guideline adherence have been shown to help improve thrombolysis uptake and shorten thrombolysis process times. In Canada, following the initiation of an Improvement Collaborative intervention during 2016–2017, the number of patients receiving thrombolysis increased from 9.35% in the pre-period to 15.73% in the post-period, the median DTN time was reduced significantly from 70 to 39 minutes, and a significantly higher number of patients were discharged home in the post-period (46.5% to 59.5%) (Kamal et al., 2020). Using data from 71,169 patients admitted to 1,030 GWTG-participating hospitals, the outcomes and process times of patients admitted before and after the initiation of a quality improvement initiative (Target:Stroke) were examined (Fonarow et al., 2014). During that time the median DTN were reduced significantly from pre- to post- intervention (77 vs. 67 minutes, p<0.001), the percentage of patients treated within 60 minutes of stroke onset increased significantly from 26.5% to 41.3%, and in-hospital mortality decreased significantly from 9.93% to 8.25%. The percentage of patients discharged home also increased significantly from 37.6% to 42.7%.
The results from several studies indicate that tenecteplase, which has some pharmacokinetic advantages over alteplase, may be non-inferior to alteplase. Several clinical trials are ongoing and the results are not yet available. In these trials tenecteplase was compared with either alteplase (ATTEST2 NCT0281440) or placebo, or best medical management (TIMELESS NCT03785678, TWIST NCT03181360, and TEMPO-2 NCT02398656). Among completed trials comparing tenecteplase with alteplase, all were used as a potential bridging treatment prior to thrombectomy. The Alteplase Compared to Tenecteplase in Patients with Acute Ischemic Stroke (AcT) Trial (Mennon et al., 2022) was the first trial to report that tenecteplase is non-inferior to alteplase for 90-day functional outcomes. In this trial, 1,600 patients recruited from 22 centres who were eligible for treatment with alteplase (+/-thrombectomy) were randomized to receive intravenous tenecteplase (0.25mg/kg, maximum 25m) or 0.9 mg/kg alteplase. At a median of 97 days 36.9% of patients in the tenecteplase group achieved the primary outcome (mRS score of 0-1) vs.34.8% in the alteplase group (unadjusted difference=2.1%, 95% CI -2.6% to 6.9%; adjusted RR=1·1, 95% CI 1·0 to 1·2), meeting the non-inferiority threshold, (the lower bound 95% CI of which was set at >-5%). There was no significant difference between groups in mortality at 90 days (15.3% vs. 15.4%), or in the proportion with symptomatic ICH at 24 hours (3.4% vs. 3.2%). In contrast to these findings, the NOR-TEST 2 (Kvistad et al., 2022) was halted early due to safety concerns, which included an increased risk of intracranial hemorrhage and mortality; however, the dose in the tenecteplase group was higher (0.4 mg/kg) than is currently recommended (0.25 mg/kg). In the EXTEND-IA TNK (Campbell et al., 2018), which compared 0.25mg/kg tenecteplase vs. 0.9 mg/kg alteplase, at initial angiographic assessment, a significantly higher number of patients in the tenecteplase group achieved substantial reperfusion (22% vs. 10%, p=0.02 for superiority), although the percentage of patients who were functionally independent at 90 days or who had achieved an excellent outcome, did not differ between groups.
Sex and Gender Considerations
Possible interactions (treatment group x sex) were not analyzed in the initial reports of early trials of alteplase including NINDS (1995), ATLANTIS (1995), or ECASS (1995, 1998, 2008). The IST-III examined this relationship and reported there were no significant interactions based on sex, as did the authors of the ENCHANTED trial (2016) that examined low vs. standard dose alteplase. In more recent trials of late window treatment, including WAKE-UP (2018) and EXTEND (2019), the results of subgroup analyses based on sex were not conducted or reported. In the RCTs of tenecteplase including NOR-TEST 2 (2022), EXTEND-IA TNK (2018), and NOR-TEST (2017), the effect of treatment based on sex was not reported in subgroup analyses in the initial publications. Subgroup analysis for interactions based on sex for the AcT trial (2022) were conducted and no interactions were found.
Endovascular Thrombectomy
Re-vascularization can also be achieved through mechanical dislodgement with specialized devices (+/- intra-arterial and/or intravenous rt-PA). To date, over 10 major RCTs have been completed for which results have been published, in which endovascular therapies were compared with best medical management. Several trials are still ongoing or have yet to report their findings (e.g., TENSION NCT03094715; MR CLEAN-LATE ISRCTN 19922220). The recent results from most of these trials indicate that rapid endovascular therapy is a safe and more effective treatment than intravenous t-PA alone, for patients with anterior circulation ischemic strokes in selected regions, when performed within 6 to 24 hours of symptom onset.
In the one of the earliest trials, MR CLEAN (Berkhemer et al., 2014), included 500 adult patients with a baseline NIHSS score of 2 or greater, and who were treatable within 6 hours of stroke onset. Patients were randomized to receive endovascular treatment with rt-PA or urokinase, and/or mechanical treatment with retrievable stents, which were used in 81.5% of patients, or other available devices, versus best medical management. The median time from stroke onset to groin puncture was 260 minutes. The majority of patients in both groups were treated with intravenous t-PA (87.1% intervention group, 90.6% control group). There was a significant shift in the distribution towards more favourable mRS scores among patients in the intervention group at 90 days (adj common OR=1.67, 95% CI 1.21-2.30). The odds of both a good (mRS 0-2) and excellent (mRS 0-1) recovery at day 90 were also significantly higher among patients in the intervention group (adj OR=2.07, 95% CI 1.07-4.02 and adj OR=2.16, 95% CIU 1.39-3.38, respectively). Patients in the intervention group were more likely to have a lower median final infarct volume (-19 mL, 95% CI 3-34, n=298). At two-year follow-up (van den Berg et al., 2017), the odds of an mRS score of 0-2 remained significantly higher in the intervention group (37.1% vs. 23.9%, adj OR= 2.21, 95% CI 1.30−3.73, p=0.003). The ESCAPE trial (Goyal et al., 2015) enrolled 316 patients ≥18 years, with stroke onset 5 and moderate-to-good collateral circulation. Patients were randomized to receive endovascular mechanical thrombectomy, using available devices or best medical management. The median time from stroke onset to first reperfusion was 241 minutes. 72.7% of patients in the intervention group and 78.7% of those in the control group received intravenous t-PA. The odds of improvement in mRS scores by 1 point at 90 days were significantly higher among patients in the intervention group (adj OR=3.2, 95% CI 2.0-4.7). The odds of good outcome (mRS score 0-2) at 90 days were also higher in the intervention group (adj OR=1.7, 95% CI 1.3-2.2), as were the odds of a NIHSS score of 0-2 and a Barthel Index score of 95-100 (adj OR=2.1, 95% CI 1.5-3.0 and 1.7, 95% CI 1.3-2.22, respectively). The risk of death was significantly lower in the intervention group (adj RR=0.5, 95% CI 0.-0.8). In neither MR CLEAN nor ESCAPE, was there an increased risk of symptomatic ICH associated with endovascular therapy. No interaction effects were found in subgroup analyses of age, stroke severity, time to randomization, or baseline ASPECTS in either of the trials.
The results of the DAWN (Nogueira et al., 2018) and DEFUSE-3 (Albers et al., 2018) trials indicate that the treatment window for mechanical thrombectomy is wider than previously thought. The DAWN trial included 206 patients, last been known well 6 to 24 hours earlier, with no previous disability (mRS 0-1) and who met clinical mismatch criteria who had either failed intravenous t-PA therapy, or for whom its administration was contraindicated because of late presentation. Patients were randomized to treatment with thrombectomy with Trevo device plus medical management, or medical management alone. The trial was terminated early after interim analysis when efficacy of thrombectomy was established. The median intervals between the time that a patient was last known well and randomization was 12.2 hours in the thrombectomy group and 13.3 hours in the control group. The mean utility weighted mRS score was significantly higher in the thrombectomy group (5.5 vs. 3.4, adj difference =2.0, 95% Cr I 1.1-3.0, prob of superiority >0.999). There were no interactions in subgroup analysis (mismatch criteria, sex, age, baseline NIHSS score, occlusion site, interval between time that patient was last known well and randomization and type of stroke onset). A significantly higher proportion of patients in the thrombectomy group experienced an early response to treatment, had achieved recanalization at 24 hours, and were independent (mRS 0-2) at 90 days (49% vs. 13%, NNT=3). The admission criteria for the DEFUSE-3 trial were broader and included those who had remaining ischemic brain tissue that was not yet infarcted. The median time from stroke onset to randomization was just under 11 hours for patients in the endovascular group. A significantly higher proportion of patients in the endovascular group were independent (mRS 0-2) at 90 days (45% vs. 17%, OR=2.67, 95% CI 1.60–4.48, p
The results from several meta-analyses that pooled the results from these major trials indicate better outcomes were associated with mechanical thrombectomy. A recent Cochrane review (Roaldsen et al., 2021) included the results from 19 RCTs (3,793 participants). Treatment with EVT was associated with a significantly higher likelihood of favourable outcome (RR=1.61, 95% CI 1.42 to 1.82) with a high certainty of evidence, without a significantly increased risk of symptomatic ICH (RR=1.46, 95% CI 0.91 to 2.36). A pooled analysis of 6 RCTs including DAWN, DEFUSE 3, ESCAPE, RESILIENT, POSITIVE and REVASCAT also found significantly better outcomes in patients in the EVT group (Jovin et al., 2021). The was a significant shift in the ordinal analysis of mRS scores favouring less disability in the thrombectomy group (adj OR=2·54, 95% CI 1·83–3·54) with stronger effects noted with earlier treatment.
For large artery occlusions in the posterior circulation, the data are limited with the results from two RCTs in which EVT was compared with best medical management. Liu et al. (2020) included 131 adult patients presenting within 8 hours of vertebrobasilar occlusion to 28 centres in China in the Basilar Artery Occlusion Endovascular Intervention versus Standard Medical Treatment (BEST) trial. The trial was terminated early due to excessive crossovers and low enrollment. In the intention-to-treat analysis, the percentage of patients with a favourable outcome (mRS 0-3) at 90 days was not significantly higher in the intervention group (42% vs.32%; adjusted [age and baseline NIHSS] OR=1·74, 95% CI 0·81–3·74, p=0.23), nor was the percentage of patients who were functionally independent; however, in both the per protocol and as treated analyses, the percentage of patients with a favourable outcome was significantly higher in the EVT group. There was no significant difference between groups in 90-day mortality or in symptomatic intracerebral hemorrhage (sICH). The Basilar Artery International Cooperation Study (BASICS) trial recruited 300 patients with basilar artery occlusion (Langezaal et al., 2021). Intravenous alteplase was used in close to 80% of patients in the EVT and control groups. The percentage of patients in the EVT group who experienced a favourable (mRS 0-3) or excellent (mRS 0-2) outcome at 90 days was not significantly higher in the EVT group. The results of these two RCTs and three observational studies were pooled in a systematic review by Katsanos et al. (2021). With low certainty of evidence, there was no significant difference found between the groups for the primary outcome of mRS score 0-3 at 90 days (RR= 0.97, 95% CI: 0.64-1.47). There were no significant differences between groups for the proportion of patients with mRS scores of 0-2 at 3 months, all-cause mortality or functional outcome (shift analysis), with significant heterogeneity. The risk of sICH was significantly higher in the EVT group (RR=5.42, 95%CI: 2.74-10.71).
To date, 6 RCTs have been published comparing direct EVT with intravenous alteplase prior to EVT (i.e., bridging). The most recent trials, SWIFT DIRECT (Mitchell et al., 2022) and SWIFT DIRECT (Fischer et al., 2022) both reported that EVT alone was not shown to be non-inferior to EVT plus thrombolysis. For the primary outcome of mRS score of 0-2 at 90 days, the adjusted differences in proportions between groups were −7·3% (95% CI −16·6 to 2·1, p=0·12) in the SWIFT-DIRECT trial and −5·1% (95% CI −16 to 5·9, p=0·19) in the DIRECT SAFE trial, which crossed the lower boundaries of the two-sided 95% confidence interval set for non-inferiority at 12% and 10%, respectively. Two previously published trials, the SKIP trial (Suzuki et al., 2021) and MR CLEAN–NO IV trial (LeCouffe et al., 2021), also did not demonstrate the non-inferiority of EVT alone. In the MR CLEAN–NO IV trial, the adjusted common odds ratio (OR) for shift in mRS score at 90 days was 0.84 (95% CI 0.62 to 1.15), which showed neither superiority nor non-inferiority of EVT alone. In the SKIP trial, mechanical thrombectomy alone was not associated with a favourable shift in the distribution of the mRS score at 90 days (OR=0.97, 1-sided 97.5% CI, 0.60 to ∞; non-inferiority p = .27, which crossed the 0.74 threshold). In contrast, DIRECT-MT (Yang et al., 2021) and DEVT (Zi et al., 2021) reported that EVT alone was non-inferior to alteplase followed by EVT. In the DEVT trial, 54.3% of patients in the EVT group achieved functional independence vs. 46.6% in the bridging group (difference= 7.7%; 1-sided 97.5% CI, −5.1% to ∞; p = .003 for non-inferiority, threshold for non-inferiority was -10%). Finally, EVT alone was non-inferior to bridging in an ordinal shift analysis of mRS scores at 90 days (adjusted common OR=1.07; 95% CI 0.81 to 1.40; p=0.04 for non-inferiority) in the DIRECT-MT trial.
There have been a limited number of RCTs specifically comparing the use of general anesthesia versus conscious sedation for EVT procedure. Preliminary results of one of the most recent trials the Anesthesia Management in Endovascular Therapy for Ischemic Stroke (AMETIS) trial (NCT03229148), indicate that conscious sedation increased the probability of a good outcome (mRS 0-2) at 90 days by 29%. Previous single-centre trials including the General or Local Anesthesia in Intra Arterial Therapy (GOLIATH, Simonsen et al., 2018), Anesthesia During Stroke (AnStroke Trial, Löwhagen Hendén et al., 2017) and Sedation vs. Intubation for Endovascular Stroke Treatment (SIESTA, Schönenberger et al., 2016), reported that general anesthesia was associated with better outcome (mRS 0-2) at 90 days. The conversion from conscious sedation to general anesthesia in these trials occurred in 6.3%, 14.3%, and 15.5%. The results of the SEdation Versus General Anesthesia for Endovascular Therapy in Acute Ischemic Stroke (SEGA, NCT03263117) are expected in early 2023. A systematic review including the results of all three aforementioned trials plus data from a pilot study of 40 patients (Campbell et al., 2021) found the odds of successful recanalization and good functional outcome were significantly higher in the general anesthesia group (OR=2.14, 95% CI 1.26-3.62, p=0.005 and OR=1.71, 95% CI: 1.13-2.59; P=0.01, respectively), with no significant differences between groups in the risk of mortality or intracerebral hemorrhage. A Cochrane review (Tosello et al. 2022) included the results from 7 RCTs and reported on both short and long-term outcomes. In the short-term, general anesthesia was not associated with better early neurological recovery or stroke related mortality, but was associated with a decreased risk of adverse events and greater likelihood of artery revascularisation. The likelihood of having a good functional outcome (mRS ≤2) at 90 days was not significantly greater in the general anesthesia group. The outcomes of patients who received general anesthesia or conscious sedation has also been examined in the context of EVT RCTs. Using the results from 7 RCTs including MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT, PISTE and THRACE, Campbell et al. (2018) performed a patient-level meta-analysis comparing the outcomes of patients randomized to the mechanical thrombectomy groups who had received general anesthesia or non-general anesthesia. The odds of improved outcome using non-general anesthesia were significantly higher in ordinal analysis of mRS scores. The authors estimated for every 100 patients treated under general anesthesia (compared with non-general anesthesia), 18 patients would have worse functional outcome, including 10 who would not achieve functional independence. There was no increased risk of 90-day mortality associated with general anesthesia.
Sex and Gender Considerations
In a patient-level meta-analysis using data from 5 RCTs, conducted by the HERMES Collaborators (2016), there were no significant treatment effects of EVT based on pre-specified subgroups including age, sex, NIHSS, site of intracranial occlusion, intravenous alteplase received or ineligible, ASPECTS, time from onset to randomisation, or the presence of tandem cervical carotid occlusion. The same finding was reported in another Hermes Collaboration, using data from 7 RCTs (Chalos et al. 2019), which was confined to an examination of sex differences. Subgroup analyses based on sex were not conducted for the primary outcome in the RESCUE-Japan LIMIT (2022) or REVESCAT (Jovin et al. 2015) trials, although other potential effect modifiers (e.g. age, baseline NIHSS score) were examined. No evidence of heterogeneity of treatment effect based on sex was detected in prespecified subgroups in the DEFUSE 3 trial (Albers et al. 2018), DAWN trial (Nogueira et al. 2018), ESCAPE (Goyal et al. 2015), or THRACE (2016) trial, where subgroup analysis was performed. In the two, most recent trials examining direct EVT with bridging therapy, (DIECT SAFE, Mitchell et al. 2022 and SWIFT DIRECT, Fischer et al. 2022), differences in sexes between treatment groups were examined in prespecified subgroup analyses; none were found. Sex differences were examined specifically in 3,422 patients included in the IRETAs database who had undergone EVT treatment since 2011 (Casetta et al. 2022). The outcomes of women vs. men were compared in the original cohort (1,621 men and 1,801 women) and in a propensity-matched cohort of 1,150 men and women. In both the whole cohort and matched-pair cohort, the odds of functional independence at 90 days given EVT treatment were significantly higher in women (OR= 1.19, 95% CI 1.02–1.38 and OR=1.25, 95% CI 1.04-1.51, respectively). Time metrics (e.g., onset to groin puncture) were similar for men and women.
Note: The CSBPR Acute Stroke Management writing group and the National Advisory Committee strongly endorse all of the recommendations in Section 5, based on available research evidence, clinical expertise, and international consensus. A recent technology assessment report provided a focused assessment of some of these data and suggested there is “substantial uncertainty” regarding the effectiveness of alteplase; however, this technology report did not synthesize all the available evidence and their conclusions differ from most other international guideline organizations as well as the CSBPR writing group. Refer to evidence table (CADTH, 2022).
Previous Section 4. Emergency Department Evaluation and Management of Patients with Acute Stroke and TIA Next Section 6. Acute Antithrombotic Therapy